
/

 Create SBlueman

Reply to this topicStart new topic

 Mark site read Home Forums Hacking/Emulation Hacking Documentation
Mini-helmets for NFC West? (cxrom 32 team NES TSB)

 Mini-helmets for NFC West? (cxrom 32 team
NES TSB)
By buck, February 29, 2008 in Hacking Documentation

Follow 0

buck
DARRELL GREEN

Members
 2,060

6,332 posts
Location: Tecmo Super

Street
Tecmo Titles: Lincoln V

(2015)

Posted February 29, 2008 Report post

cxrom, where are the NFC West mini-helmets data stored in your 32 team rom?

 Quote

“The right to speak and the right to refrain from speaking are complementary components of …
‘individual freedom of mind.’”

link to change one's signature

cxrom
Veteran

Members

Posted February 29, 2008 Report post

at 0x3F6C3

A4A5B4B586878C8DA69BB68382008E8330023B3C

 Q t

Forums Downloads Experiences Online Leagues

Activity More

Home Page Member map Online Users Staff

Search...

/

 19
373 posts

Location: Phoenix, AZ

 Quote

buck
DARRELL GREEN

Members
 2,060

6,332 posts
Location: Tecmo Super

Street
Tecmo Titles: Lincoln V

(2015)

Posted May 29, 2016 Report post

stumped again at these NFC west minis. if I don't mess with them for a while I tend to
forget how they work. anyways, I simply need to slide the "special tile" for the ARZ down a
couple of notches so that it lines up with the ARZ logo (I slid the ARZ logo down x08).

I do not understand where the variable is to position the ARZ special tile. in my rom, said
ARZ special tile is C6.

see attached png for reference.

 Quote

“The right to speak and the right to refrain from speaking are complementary components of …
‘individual freedom of mind.’”

link to change one's signature

buck
DARRELL GREEN

Members
 2,060

6,332 posts

Posted May 29, 2016 Report post

�gured it out. simple and stupid. it is up there with the other regular mini stuff x23bc0 area.
 just had to shift it down like I shifted all the non-nfc west team special tiles. I don't know
why those damn minis mess with my head so much.

 Quote

“The right to speak and the right to refrain from speaking are complementary components of …
‘individual freedom of mind.’”

 1

bruddog reacted to this

/

Location: Tecmo Super
Street

Tecmo Titles: Lincoln V
(2015)

link to change one's signature

bruddog
Down with button mashing

Moderators

 3,074
11,466 posts
Location: Ca

Posted May 29, 2016 Report post

The highlighted 3C isn't actually the tile. Here is the FCEUX logic I went through. I'm working
off a slightly different rom but the logic is the same. Knowing the tile ID for the sprite I did a
quick search in sprite memory ($200-$2FF)

The data is layed out as follows
Y coord, tile ID, attributes, x coord

Then I found the tile ID F9 at 0x2FD. Then I set a write breakpoint for that address. You'd
want to set the breakpoint once you are at the main menu. Ideally if you know the tile you
could add a further condition like A==#F9. A is the accumulator and is usually loaded with
the data to be stored.

Once it breaks you get this in the FCEUX window

 08:A7F6:B9 52 BC LDA $BC52,Y @ $BCDA = #$F9
 08:A7F9:9D 01 02 STA $0201,X @ $02FD = #$F9

If you hover over the A7F6 with the cursor you'll see at the bottom of the debug window the
offset in the rom its executing from which in this case is
0x22806. So where is it getting the data from? Well in that line we see @BCDA. B would add
0x1000 to the current offset+ the head offset of 0x10 so the tile data is

at 0x23CEA. The Y coordinate is the byte before that at 0x23CE9.

 Quote

bruddog
Down with button mashing

Posted May 29, 2016 Report post

Well looks like you �gured it out on your own.

 Quote

 1

buck reacted to this

/

Moderators

 3,074
11,466 posts
Location: Ca

buck
DARRELL GREEN

Members
 2,060

6,332 posts
Location: Tecmo Super

Street
Tecmo Titles: Lincoln V

(2015)

Posted May 29, 2016 Report post

thanks for the tips, I will have to try this method out sometime. by "sprite memory" do you
mean the PPU Memory?

 Quote

“The right to speak and the right to refrain from speaking are complementary components of …
‘individual freedom of mind.’”

link to change one's signature

 On 5/29/2016 at 7:56 PM, bruddog said:

The highlighted 3C isn't actually the tile. Here is the FCEUX logic I went through. I'm
working off a slightly different rom but the logic is the same. Knowing the tile ID for
the sprite I did a quick search in sprite memory ($200-$2FF)

The data is layed out as follows
Y coord, tile ID, attributes, x coord

Then I found the tile ID F9 at 0x2FD. Then I set a write breakpoint for that address.
You'd want to set the breakpoint once you are at the main menu. Ideally if you know
the tile you could add a further condition like A==#F9. A is the accumulator and is
usually loaded with the data to be stored.

Once it breaks you get this in the FCEUX window

 08:A7F6:B9 52 BC LDA $BC52,Y @ $BCDA = #$F9
 08:A7F9:9D 01 02 STA $0201,X @ $02FD = #$F9

If you hover over the A7F6 with the cursor you'll see at the bottom of the
debug window the offset in the rom its executing from which in this case is
0x22806. So where is it getting the data from? Well in that line we see @BCDA. B
would add 0x1000 to the current offset+ the head offset of 0x10 so the tile data is

at 0x23CEA. The Y coordinate is the byte before that at 0x23CE9.

/

bruddog
Down with button mashing

Moderators

 3,074
11,466 posts
Location: Ca

Posted May 29, 2016 Report post

No I mean CPU memory. The CPU memory contains the sprite information that get copied
one per frame.

The link below also contains info about the sprite attribute byte.
http://wiki.nesdev.com/w/index.php/PPU_OAM

"DMA
Most programs write to a copy of OAM somewhere in CPU addressable RAM (often $0200-$02FF)
and then copy it to OAM each frame using the OAMDMA ($4014) register. Writing N to this register
causes the DMA circuitry inside the 2A03/07 to fully initialize the OAM by writing OAMDATA 256
times using successive bytes from starting at address $100*N). The CPU is suspended while the
transfer is taking place.

The address range to copy from could lie outside RAM, though this is only useful for static screens
with no animation.

Not counting the OAMDMA write tick, the above procedure takes 513 CPU cycles (+1 on odd CPU
cycles): first one (or two) idle cycles, and then 256 pairs of alternating read/write cycles. (For
comparison, an unrolled LDA/STA loop would usually take four times as long.)"

 Quote

 Reply to this topic...

GO TO TOPIC LISTING

SBlueman

RECENTLY BROWSING 1 MEMBER

 Mark site read Home Forums Hacking/Emulation Hacking Documentation
Mini-helmets for NFC West? (cxrom 32 team NES TSB)

Theme Contact Us
TecmoBowl.org

Powered by Invision Community

 1

buck reacted to this

