
 Create SBlueman

Reply to this topicStart new topic

 Mark site read Home Forums Hacking/Emulation Hacking Documentation How Tile Graphics Are Stored In TSB (NES)

 How Tile Graphics Are Stored In TSB (NES)
By averagetsbplayer, June 12, 2008 in Hacking Documentation

Follow 0

averagetsbplayer
Tecmo Legend

Members
 141

1,381 posts
Location: Madison, WI

Posted June 12, 2008 Report post

[i'm assuming that this guide would explain other NES games, but I haven't looked at other
games, yet.]
Each tile in TSB is made up of an 8x8 grid for a total of 64 pixels. Each tile is made up of 16
bytes. A tile can be made up of 3 colors (When using a tile editor, we can see that there are
four colors available per tile. However, one of the colors is transparent.).
Each of the 8 rows is stored as two bytes on the rom:
Bytes 1 and 9 make Row 1
Bytes 2 and 10 make Row 2
Bytes 3 and 11 make Row 3
Bytes 4 and 12 make Row 4
Bytes 5 and 13 make Row 5
Bytes 6 and 14 make Row 6
Bytes 7 and 15 make Row 7
Bytes 8 and 16 make Row 8
Color 1 is stored in the �rst 8 bytes, Color 2 is stored in the last 8 bytes (9-16), and Color 3 is
stored as part of all 16 bytes.
Each column of the grid is represented by a hex value.
Column 1 is represented by 'x80'
Column 2 is represented by 'x40'
Column 3 is represented by 'x20'
Column 4 is represented by 'x10'
Column 5 is represented by 'x08'
Column 6 is represented by 'x04'
Column 7 is represented by 'x02'
Column 8 is represented by 'x01'
Of course, at this point, nothing has been made clear as to how this works. I'll try to explain.
Let's take this next graphic as an example:

Forums Downloads Experiences Online Leagues

Activity Our Picks

Home Page Member map Online Users Staff

Search...

1 - Color 1
2 - Color 2
3 - Color 3

[1 | | | | | | |]
[| | | | | | |]
[| | | | | | |]
[| | | | | | |]
[| | | | | | |]
[| | | | | | |]
[| | | | | | |]
[| | | | | | |]

In this preceding graphic, the top left corner has a '1' in it. This is showing that a pixel of
Color 1 is stored in this tile. To determine what is stored in the 16 bytes that make this
graphic, we use the preceding assumptions about how the data is stored.
The pixel is stored in row 1, so it is stored in Bytes 1 and 9.
The pixel is using color 1, so it is stored in one of the �rst 8 Bytes. (This means that Byte 1
will actually hold the data.)
The pixel is in column 1, so it is represented by 'x80'.
The resulting string of bytes is as follows:

80 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Using the same rules as above, let's examine these next 4 examples.

Here is the hex code that represents the 16 bytes corresponding to each of these tiles. The
tile all the way on the left is labeled as '1' while the tile all the way on the right is labeled as
'4'.

[| | | | | | |] [| | | | | | |
[1 | | | | | | |] [| | | | | | |
[| | | | | | |] [1 | | | | | | |
[| | | | | | |] [| | | | | | |
[| | | | | | |] [| | | | | | |

[| | | | | | |] [| | | | | | |
[| | | | | | |] [| | | | | | |
[| | | | | | |] [| | | | | | |

1. 00 80 00 00 00 00 00 00 00 00 00 00 00 00 00 00
2. 00 00 80 00 00 00 00 00 00 00 00 00 00 00 00 00
3. 40 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
4. 20 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Using the same rules as above, let's examine these next 4 examples. Notice, the '1' has
been replaced by '2' to signify the use of Color 2.

Here is the hex code that represents the 16 bytes corresponding to each of these tiles. The
tile all the way on the left is labeled as '1' while the tile all the way on the right is labeled as
'4'.

1. 00 00 00 00 00 00 00 00 00 80 00 00 00 00 00 00
2. 00 00 00 00 00 00 00 00 00 00 80 00 00 00 00 00
3. 00 00 00 00 00 00 00 00 40 00 00 00 00 00 00 00
4. 00 00 00 00 00 00 00 00 20 00 00 00 00 00 00 00

Using the same rules as above, let's examine these next 4 examples.

[| | | | | | |] [| | | | | | |
[2 | | | | | | |] [| | | | | | |
[| | | | | | |] [2 | | | | | | |
[| | | | | | |] [| | | | | | |
[| | | | | | |] [| | | | | | |
[| | | | | | |] [| | | | | | |
[| | | | | | |] [| | | | | | |
[| | | | | | |] [| | | | | | |

[| | | | | | |] [| | | | | | |
[| | | | | | |] [| | | | | | |
[| | | | | | |] [| | | | | | |
[| | | | | | |] [| | | | | | |
[| | | | | | |] [| | | | | | |
[| | | | | | |] [| | | | | | |
[| | | | | | |] [| | | | | | 2 |
[| | | | | | | 1] [| | | | | | |

Here is the hex code that represents the 16 bytes corresponding to each of these tiles. The
tile all the way on the left is labeled as '1' while the tile all the way on the right is labeled as
'4'.

1. 00 00 00 00 00 00 00 01 00 00 00 00 00 00 00 00
2. 00 00 00 00 00 00 00 00 00 00 00 00 00 00 02 00
3. 00 00 00 00 08 00 00 00 00 00 00 00 00 00 00 00
4. 00 00 10 00 00 00 00 00 00 00 10 00 00 00 00 00

Of course, placing one pixel on the grid is completely useless in almost all cases. Let's
move on to handling placing multiple pixels on the grid. Each row of the grid is handled by
two bytes (Byte X and Byte X+8. So, Byte 1 and Byte 9, 2 and 10, 3 and 11, etc. are the
pairings as listed previously. So, a pixel on Row 2 does not affect a pixel on Row 1. So, take
for example the following displays:

Here is the hex code that represents the 16 bytes corresponding to each of these tiles. The
tile all the way on the left is labeled as '1' while the tile all the way on the right is labeled as
'4'.

1. 80 80 00 00 00 00 00 00 00 00 00 00 00 00 00 00
2. 00 80 80 00 00 00 00 00 00 00 00 00 00 00 00 00
3. 00 40 00 40 00 00 00 00 00 00 00 00 00 00 00 00
4. 00 00 00 00 00 00 00 00 00 00 04 04 00 00 00 00

The more complex part of this process occurs when placing multiple pixels on the same
row. The hex values associated with the columns that have the pixel are added to determine
the hex value that is stored in the byte. So, let's assume we are looking solely at Row 1. Let's
also put Color 1 in Column 1 and in Column 2. Since it's Row 1 and Color 1, we know that
Byte 1 is going to be the location of the value. However, how do we determine the value?
This is where we add the hex values associated with the columns. So, Column 1 and
Column 2 are individually represented by 'x80' and 'x40'. If we add these values together, we
get 'xC0'. So, Byte 1 is going to have a value of 'xCO' stored in it to represent that Column 1
and Column 2 have a pixel of Color 1 stored. Take the following as an example:

[1 | | | | | | |] [| | | | | | |
[1 | | | | | | |] [1 | | | | | | |
[| | | | | | |] [1 | | | | | | |
[| | | | | | |] [| | | | | | |
[| | | | | | |] [| | | | | | |
[| | | | | | |] [| | | | | | |
[| | | | | | |] [| | | | | | |
[| | | | | | |] [| | | | | | |

[1 | 1 | | 1 | | 1 | |]
[| | | | | | |]
[| | | | | | |]
[| | | | | | |]
[| | | | | | |]
[| | | | | | |]
[| | | | | | |]
[| | | | | | |]

If we have this preceding situation, we can see that Bytes 1 and 9 could potentially have a
value stored since Row 1 contains pixels. Since Color 1 is the only color stored in that row,
we know that only Byte 1 will be affected. Adding the values of the columns that have the
pixel, we can get the following:
'x80' + 'x40' + 'x10' + 'x04' = 'xD4'
So, the resulting string of bytes will be:

D4 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

The same idea will be carried through with Color 2.
Now let's see the example where we are using both Color 1 and Color 2 in a given row:

[1 | 1 | 2 | 1 | 2 | 1 | 2 | 2]
[| | | | | | |]
[| | | | | | |]
[| | | | | | |]
[| | | | | | |]
[| | | | | | |]
[| | | | | | |]
[| | | | | | |]

So, for Byte 1 we add all the column values associated with Color 1:
'x80' + 'x40' + 'x10' + 'x04' = 'xD4'
So, for Byte 9 (Color 2), we add all the column values associated with Color 2:
'x20' + 'x08' + 'x02' + 'x01' = 'x2B'
The resulting string of hex values would be as follows:

D4 00 00 00 00 00 00 00 2B 00 00 00 00 00 00 00

If we are using Color 3, we need to show that in both the left byte (Byte 1) and the right Byte
(Byte 9).
So, for a simpler example:

[| | 3 | | 3 | | 3 |]
[| | | | | | |]
[| | | | | | |]
[| | | | | | |]
[| | | | | | |]
[| | | | | | |]
[| | | | | | |]
[| | | | | | |]

Again, we are working with Bytes 1 and 9 since it is Row 1. Since it is Color 3, it is re�ected
in both bytes.
So, for Byte 1:
'x20' + 'x08' + 'x02' = 'x2A'
So, for Byte 9:
'x20' + 'x08' + 'x02' = 'x2A'
So, the resulting string of hex values will be:

2A 00 00 00 00 00 00 00 2A 00 00 00 00 00 00 00

The last step is to put all of this together. Let's assume the following:

[2 | 1 | 3 | 1 | 3 | 2 | 3 | 1]
[| | | | | | |]
[| | | | | | |]
[| | | | | | |]
[| | | | | | |]
[| | | | | | |]
[| | | | | | |]
[| | | | | | |]

So, Byte 1 is going to add the column values for Color 1 and Color 3.
Byte 9 is going to add the column values for Color 2 and Color 3.
This means the following calculation for Byte 1:
'x40' + 'x20' + 'x10' + 'x08' + 'x02' + 'x01' = 'x7B'
This means the following calculation for Byte 9:
'x80' + 'x20' + 'x08' + 'x04' + 'x02' = 'xAE'
So, the hex string will be:

7B 00 00 00 00 00 00 00 AE 00 00 00 00 00 00 00

I know there are parts that are not going to be clear. I'll try to make this post more clear
when I get chance. Until then, if you have any questions, post them and I'll try to answer
them.

 Quote

Madison Tecmo Tournament - Only 1/2 garbage since 2008
2018: Green Bay - Not Good; Madison - Sweet 16 | 2017: Green Bay - Not Good; Madison - t-5th
| 2016: Madison - Sweet 16 | 2015: Green Bay - 2nd Place; Madison - Elite 8, Ohio - Not Good,
Iowa - Not Good | 2014: Nebraska - 2nd Place; Madison - Sweet 16; Ryder Cup - Winner (Team
Madison); Iowa - Winner | 2013: Nebraska - Elite 8; Madison - Round of 32; Ohio - Sweet 16;
Iowa - Final 6 | 2012: Madison - Sweet 16; Ohio - Sweet 16 | 2011: Madison - Round of 32; Ohio -
2-3 in triple-elim | 2010: Madison - Elite 8; Ohio - Sweet 16; Chicago - Final 4 | 2009: Madison -
Round of 32; Ohio - Elite 8 | 2008: Madison - Round of 32

 Reply to this topic...

GO TO TOPIC LISTING NEXT UNREAD TOPIC

SBlueman

RECENTLY BROWSING 1 MEMBER

 Mark site read Home Forums Hacking/Emulation Hacking Documentation
How Tile Graphics Are Stored In TSB (NES)

Theme Contact Us
TecmoBowl.org

Powered by Invision Community

 1

bruddog reacted to this

