40

toolie

 Tecmo Legend

Mods: HSRL © 2,808
4,263 posts
Location: Michigan
The Boogedy Man Walked All Over Me!

Posted December 7, 2013

So I'm a math guy, and I was interested in the problem of what the distribution of conditions would approach as the season goes on. Currently, with two games to play in week 15 of WTF: 2.0 (which tracks conditions), the distribution of conditions is this...

600 total players (20 teams, 30 players per team).

Bad (e): 123 (20.5\%)

Average (A): 215 (35.8\%)

Good (G): 184 (30.7\%)

Excellent (E): 68 (11.3\%)

Injured (I): 10 (1.7\%)

From the forums, I read (via bruddog) that the chances of changing conditions goes like this:

G: 0% move to bad, 25% move to average, 50% stay in good, 25% move to excellent

E: 0% move to bad, 0% move to average, 75% move to good, 25% move to average

To model the flow of conditions, I used a very simple model that neglects injuries. The flow can be modeled using a 4×4 matrix T and a 4×1 conditions vector v, where the columns of the matrix T contain numbers based on the above percentages that sum to one, and the conditions vector v holds the number of players in each condition. At the start of the season, the conditions vector $v=[0,600,0,0]$ since everyone is in A. I'm writing this as a row vector for convenience, but for the matrix multiplication it needs to be a column vector.

After each quarter, we perform the multiplication $\mathrm{T}^{\star} \mathrm{v}$, which produces the theoretical distribution of players
after conditions change. After one quarter, $\mathrm{v}=[150,300,150,0]$. After two quarters, $\mathrm{v}=$ [112.5, 300, 150, 37.5]. After three quarters (and hence the first game, since conditions don't change after the 4th quarter) $v=[103.125,271.875,178.125,46.875]$. So we have fractions of players in each state, which seems silly, but that's just a slight downside of the modeling process.

After six games of this iterative process (just taking the output vector and hitting it with the matrix T 18 times) the distribution has settled in to be roughly $\mathrm{v}=[75.09,225.16,224.84$, 74.91]. So it looks like the steady-state distribution of players would be $v=[75,225,225$, 75]. This is the case for this model. If we hit that vector v with T the output will not change. We can also show this using some matrix algebra, but we'll skip that for now.

So the steady-state percentages for the distribution in this model are $12.5 \%, 37.5 \%, 37.5 \%$, and $12.5 \%(1 / 8,3 / 8,3 / 8,1 / 8)$. Our actual percentages are currently $20.5 \%, 35.8 \%, 30.7 \%$, 11.3% (with 1.7% injured). After 15 weeks the system has had a lot of time to approach a steady-state distribution, if there is one, so injuries seem to make a significant impact on the numbers, or the system is just currently in a state of bias towards bad conditions.

Improving the model to incorporate injuries seems doable enough, but there will be MANY more states due to the fact that you can't return from injury after every quarter. There is
probably a way to incorporate injuries in an average sense, which would reduce the number of states (and hence the size of the matrix and vector) but l'd have to think about how to do that a bit more.

One way to eliminate injuries is by taking out the players that can get injured ($Q B, R B, W R, T E$). That leaves 18 players per team (360 total). The current distributions there are

B: 20.3\%

A: 35.3\%

G: 32.5\%

E: 12.0\%

Pretty similar to the numbers with everyone involved, but not too far from the steady-state values. This season it looks like these non-injury-prone players as a whole have had slightly bad luck.

bruddog

Down with button mashing

-०००००००००००००००

Moderators

Play through adversity...

Posted December 11, 2014
vikingmoe02, buck, manYo and 1 other reacted to this

Posted December 11, 2014

On 12/7/2013 at 5:11 PM, toolie said:

So I'm a math guy, and I was interested in the problem of what the distribution of conditions would approach as the season goes on. Currently, with two games to play in week 15 of WTF: 2.0 (which tracks conditions), the distribution of conditions is this...

600 total players (20 teams, 30 players per team).

Bad ((o): 123 (20.5\%)
Average (A): 215 (35.8\%)
Good (G): 184 (30.7\%)
Excellent (E): 68 (11.3\%)
Injured (I): 10 (1.7\%)

From the forums, I read (via bruddog) that the chances of changing conditions goes like this:

B: 25% stay in bad, 75% move to average 0% move to good, 0% move to excellent A: 25% move to bad, 50% stay in average, 25% move to good, 0% move to excellent G: 0% move to bad, 25% move to average, 50% stay in good, 25% move to excellent E: 0% move to bad, 0% move to average, 75% move to good, 25% move to average

To model the flow of conditions, I used a very simple model that neglects injuries. The flow can be modeled using a 4×4 matrix T and a 4×1 conditions vector v, where the columns of the matrix T contain numbers based on the above percentages that sum to one, and the conditions vector v holds the number of players in each condition. At the start of the season, the conditions vector $v=[0,600,0,0]$ since everyone is in A. I'm writing this as a row vector for convenience, but for the matrix multiplication it needs to be a column vector.

After each quarter, we perform the multiplication $\mathrm{T}^{*} \mathrm{v}$, which produces the theoretical distribution of players
after conditions change. After one quarter, $v=[150,300,150,0]$. After two quarters, v $=[112.5,300,150,37.5]$. After three quarters (and hence the first game, since conditions don't change after the 4th quarter) $v=[103.125,271.875,178.125,46.875]$. So we have fractions of players in each state, which seems silly, but that's just a slight downside of the modeling process.

After six games of this iterative process (just taking the output vector and hitting it with the matrix T 18 times) the distribution has settled in to be roughly $\mathrm{v}=[75.09$, $225.16,224.84,74.91]$. So it looks like the steady-state distribution of players would be $v=[75,225,225,75]$. This is the case for this model. If we hit that vector v with T the output will not change. We can also show this using some matrix algebra, but we'll skip that for now.

So the steady-state percentages for the distribution in this model are $12.5 \%, 37.5 \%$, 37.5%, and $12.5 \%(1 / 8,3 / 8,3 / 8,1 / 8)$. Our actual percentages are currently 20.5%, $35.8 \%, 30.7 \%, 11.3 \%$ (with 1.7% injured). After 15 weeks the system has had a lot of time to approach a steady-state distribution, if there is one, so injuries seem to make a significant impact on the numbers, or the system is just currently in a state of bias towards bad conditions.

Improving the model to incorporate injuries seems doable enough, but there will be MANY more states due to the fact that you can't return from injury after every quarter. There is probably a way to incorporate injuries in an average sense, which would
reduce the number of states (and hence the size of the matrix and vector) but l'd have to think about how to do that a bit more.

One way to eliminate injuries is by taking out the players that can get injured (QB,RB,WR,TE). That leaves 18 players per team (360 total). The current distributions there are

B: 20.3\%
A: 35.3%
G: 32.5\%
E: 12.0\%

Pretty similar to the numbers with everyone involved, but not too far from the steadystate values. This season it looks like these non-injury-prone players as a whole have had slightly bad luck.

I
was wrong I finally figured out the condition code routine

B: 75% stay in bad, 25% move to average 0% move to good, 0% move to excellent A: 12.5% move to bad, 75% stay in average, 12.5% move to good, 0% move to excellent G: 0% move to bad, 12.5% move to average, 75% stay in good, 12.5% move to excellent E: 0% move to bad, 0% move to average, 25% move to good, 75% stay in excellent

brookstonfowler

phile guru

-0000000000000

Members
© 930
7,743 posts
Location: zionsville, in
Tecmo Titles: 3
I feel pretty free.

Posted December 11, 2014
wow. that makes more sense of why guys stay in Exc for a few games at a time. i'm sure you guessed my next question. is there a way to tweak the \%'s?

+ Quote

WTF champs: 1993, 2011, 2015
Retro champs: 1975
animated championshipgifs
Rick \& Roll

Moderators
© 3,074
11,466 posts
Location: Ca

L_17_A395:	; UPDATE CONDITION ROUT]
LDA \#\$80	; Allow SRAM write
STA PRG_RAM_PROTECT	;
LDA \$70	; save possesion byte ir
STA \$42	;
LDA \#\$00	; SET TEAM to player 1
STA \$70	;
@Loop1:	; CONDITION LOOP INIT
LDA \#\$00	; SET current player to
STA \$44	;
@Loop2:	; CONDITION LOOP WHILE 1
LDA \$44	; LOAD current player tc
JSR L_DE15	; CHECK if player is in:
LDA \#\$01	; LOAD Average conditior
BCS @Loop6	; Player injured? YES->E
JSR L_D8F7	; LOAD more random rand
AND \#\$18	; 25% chance of conditic
BNE @Loop10	; CONDITION CHANGE? NO-:
LDA \$44	; LOAD player
JSR L_DE2F	; GET PLAYER CONDITION($/$

CMP \#\$00	; PLAYER IN BAD?
BEQ @Loop3	; YES-> JUMP to LOAD 1
CMP \#\$03	; PLAYER IN EXCELLENT?
BEQ @Loop4	; YES->PLAYER IN EXCELLE
JSR update_random_3B	; ELSE IF PLAYER IN AVG,
AND \#\$02	;
SEC	;
SBC \#\$01	;
JMP @Loop5	; JUMP TO CURRENT CONDI
@Loop3:	; LOAD 1
LDA \#\$01	
JMP @Loop5	;JUMP TO CURRENT CONDIT]
	-
@Loop4:	; LOAD -1
LDA \#\$FF	
@Loop5:	; CURRENT CONDITION + V/
CLC	
ADC \$45	
@Loop6:	; GET NEW CONDITION BACk
STA \$45	;
LDA \#\$FC	;
STA \$43	;

EOR \#\$FF
AND \#\$03 ;
BEQ @Loop8 ;
TAX
@Loop7: ;
ASL \$45 ;
ASL \$45 ;
SEC ;
ROL \$43 ;
ROL \$43 ;
DEX ;
BNE @Loop7 ;
@Loop8:
LDA \$44 ;
LSR ;
LSR ;
TAY ;
BIT \$70 ; PLAYER 1 or 2?
BMI @Loop9 ; PLAYER 2-> BRANCH TO ؛
LDA \$6503,Y ; SAVE NEW CONDITION FOF
AND \$43
ORA \$45

JMP @Loop10	; JUMP TO INCREMENT PLA)
@Loop9:	; SAVE NEW CONDITION FOF
LDA \$6608, Y	;
AND \$43	;
ORA \$45	;
STA \$6608, Y	;
@Loop10:	; INCREMENT PLAYER AND (
INC \$44	; increment to next plas
LDA \$44	;
CMP \#\$1E	; ALL PLAYERS DONE?
BCC @Loop2	; NO->BRANCH to CONDITIC
LDA \$70	; Player 2 TEAM done?
BMI @Loop11	; YES->BRANCH to RESTORE
LDA \#\$FF	; NO->SET Possession to
STA \$70	;
JMP @Loop1	; JUMP TO CONDITION LOOF
@Loop11:	; RESTORE POSSESSION BY7
LDA \$42	;
STA \$70	;
LDA \#\$C0	; SET SRAM to NOT WRITEA
STA PRG_RAM_PROTECT	;
RTS	; RETURN

toolie

Tecmo Legend

Mods: HSRL © 2,808
4,263 posts
Location: Michigan
The Boogedy Man Walked All Over Me!

Posted December 11, 2014 (edited)
So I redid the matrix with the new transition probabilities. After 6 games (3 condition changes per game) the actual conditions of non-injury prone players was

B: 20.3\%

A: 35.3%

G: 32.5\%

E: 12.0\%

And the computation (T^18)([010 10 l') yields

B: 18.2\%

A: 34.8\%

G: 31.8\%

E: 15.2\%

Pretty close to the actual distribution. Steady-state values for each condition (as t goes to infinity) given these probabilities are

B: 16.7% (1/6)

A: $33.3 \%(1 / 3)$

G: $33.3 \%(1 / 3)$

E: 16.7\% (1/6)

Play through adversity...

bruddog

Down with button mashing

Moderators
© 3,074
11,466 posts
Location: Ca

Posted December 11, 2014
Brookston, yes with the current model its possible for the conditions to stay at the same place for a very long time....Here is a spreadsheet tool to see the possibilities for players with a nifty graph included (kinda like the one for wtf except only one season long)
conditions_prob.XLS

Posted December 12, 2014

Members
$+\quad$ Quote

Down with button mashing

- -००००००००००००००

-०००००००००००००

Posted December 12, 2014

This is only for the nes version.
$+\quad$ Quote

Moderators

3,074
11,466 posts
Location: Ca

Posted December 23, 2014

Kind of related question. Is there a "sweet spot" where a guy goes into Good/Excellent more? Example does QB1 and QB2 change conditions the same or does the computer favor one.

From doing the conditions program sometimes it seems there is a pattern like RB1 and RB3 go into Bad at the same time.
$+\quad$ Quote Posted December 23, 2014

There might be patterns because of the way the random number generation works but all of the positions have an equal chance.

Moderators
© 3,074
11,466 posts
Location: Ca

BO FB Offtackle Left
Tecmo Legend

Members © 253
3,135 posts
Location: New York

Posted January 7, 2015

On 12/11/2014 at 6:26 PM, brookstonfowler said:
wow. that makes more sense of why guys stay in Exc for a few games at a time. i'm sure you guessed my next question. is there a way to tweak the \%'s?

Was it answered if there was a way to change the percentages? I might have missed it. If I could do whatever I wanted, I would do this:

B: 25% stay in Bad, 75% move to Avg
A: 12.5% move to Bad, 75% stay in Avg, 12.5% move to Good
G: 75% move to Avg, 12.5% stay in Good, 12.5% move to Exc
E: 75\% move to Good, 25% stay in Exc

+ Quote
"There's nothing wrong with reading the game plan by the light of a jukebox."
- Kenny Stabler

bruddog Posted January 7, 2015

Moderators

© 3,074

11,466 posts
Location: Ca
toolie

Tecmo Legend

Mods: HSRL © 2,808
4,263 posts
Location: Michigan
The Boogedy Man Walked All Over Me!

On 1/7/2015 at 4:04 PM, BO FB Offtackle Left said:

Was it answered if there was a way to change the percentages? I might have missed it. If I could do whatever I wanted, I would do this:

B: 25\% stay in Bad, 75% move to Avg
A: 12.5% move to Bad, 75% stay in Avg, 12.5% move to Good
G: 75% move to Avg, 12.5% stay in Good, 12.5% move to Exc
E: 75\% move to Good, 25\% stay in Exc

With these probabilities, the long-term distribution of conditions would be roughly

Bad: 12\%

Average: 74\%
Good: 12\%
Excellent: 2\%

+ Quote
BO FB Offtackle Left reacted to this HSTL Three-Peat: Seasons 25, 26, \& 27

HSRL 1970 Champion

Play through adversity...

Down with button mashing
 -०००००००००००००

Moderators
© 3,074
11,466 posts
Location: Ca

Posted January 7, 2015

I'd probably recode it to a normal distribution ($13.5,68,13.5,5$) which is pretty close to what BO did. And also make it so that you can change into any condition at any time and have players start off with conditions in the first quarter.

+ Quote
< GO TO TOPIC LISTING

RECENTLY BROWSING 1 MEMBER

SBlueman

Theme \quad Contact Us
TecmoBowl.org
Powered by Invision Community

